Faculty Assistant

Katerina Kariolis
Engineering Quad, A221

Research Focus

Many industrial practices that use catalysts to produce chemicals, fuels, polymers, and pharmaceuticals have strong environmental impacts. The mission of our lab is to make advances in catalysis science and active site engineering to solve both fundamental and applied chemical engineering challenges to sustainably meet our growing energy and product demands. The Sarazen research group combines kinetic, synthetic, and theoretical techniques to elucidate reaction mechanisms of heterogeneous catalysts at the molecular level for atom- and energy-efficient conversions from conventional (petroleum), emerging (shale gas) and renewable (biomass- or electrocatalytically-derived) feedstocks to fuels and chemicals.

We primarily focus on one class of heterogeneous catalysts: porous crystalline materials such as zeolites, metal-organic frameworks, and porous organic polymers, which offer a large and diverse pool of catalysts and catalyst supports. Elucidating how important catalytic properties affect reactivity and selectivity, and controlling these properties via advanced synthesis strategies, are vital for the optimization and potential industrial application of heterogeneous catalysts. Precise synthesis of zeolites functionalized with various active sites or altered pore structures and metal-organic frameworks with flexible node and linker properties will allow interpretable kinetic measurements, which are combined with density functional theory calculations, to develop a molecular understanding of how reaction networks proceed.

Research Areas
Catalysis / Synthesis
Theoretical Chemistry
  • National Academy of Engineering US Frontiers of Engineering Participant, 2019
  • Postdoctoral Fellow, Chemical Engineering, Georgia Institute of Technology, 2016-2018
  • UC Berkeley Heinz Heinemann Award for Graduate Research in Catalysis, 2015
  • National Science Foundation’s Graduate Student Research Fellow, 2011
  • North American Catalysis Society Robert J. Kokes Award, 2011
Selected Recent Publications

Sarazen, M. L., Sakwa-Novak, M. A., Ping, E.W. and Jones, C. W. Effect of Different Acid Initiators on Branched Poly(propylenimine) Synthesis and CO2 Sorption Performance, ACS Sustainable Chem. Eng., 7 (2019) 7338.

Hoyt, C. B., Sarazen, M. L., and Jones, C. W. Hydroboration of Substituted Alkynes using a Solid Polymeric Carboxylic Acid Catalyst, Journal of Catalysis, 369 (2019) 493.

Sarazen, M. L. and Jones, C. W. MOF-derived Iron Catalysts for Non-Oxidative Propane Dehydrogenation, Journal of Physical Chemistry C, 122 (2018) 28637.

Sarazen, M. L. and Iglesia, E. Stability of Bound Alkoxides during Reactions of Alkenes on Solid Acids, Proceedings of the National Academy of Sciences of the United States of America 114 (2017) E3900.

Sarazen, M. L., Doskocil, E. and Iglesia, E. Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity, ACS Catalysis 6 (2016) 7059.