Tianning Diao

Department of Chemistry
New York University
Tuesday, Oct. 15, 2019
Edward C Taylor Auditorium, Frick B02
Paul Chirik
Add to Calendar2019-10-15 16:30:002019-10-15 16:30:00Paul ChirikEdward C Taylor Auditorium, Frick B0215YYYY-MM-DD

Stereoselective Alkene Functionalization via Radical and Two-Electron Pathways

Nickel catalysts exhibit unique properties. Open-shell configurations are relatively stable and readily accessible, which lead radical pathways. Moreover, the reduction potential of Ni is considerably lower than that of Pd. This reactivity is employed to functionalize alkenes. Enantioselective 1,2-dicarbofunctionalization of alkenes accesses molecules with intricate substitution patterns while introducing stereocenters. This method is readily applicable to prepare molecules with important bioactivity, such as a,a,b-triarylated ethane scaffolds. The use of reducing conditions with alkyl and aryl halides as the coupling partners avoids stoichiometric organometallic reagents and tolerates a broad range of functional groups. Mechanistic studies reveal that the use of Ni catalysts initiates radical formation and leads to unconventional enantio-determining steps. A two-electron redox pathway on a Ni(I)/Ni(III) platform achieves trans-selective diene coupling to afford important cyclic structures.

Research Areas