Contents

DEPARTMENT PROGRAM REQUIREMENTS & POLICIES
- Ph.D. Requirements ... - 1 -
- Course Requirements .. - 2 -
- Choosing an Advisor ... - 2 -
- The Advisory Committee .. - 3 -
- Teaching Requirement .. 4
- The General Examination ... 4
- Academic Evaluation ... 5
- Third Year Seminars ... 5
- Original Research Proposal .. 5
- Dissertation ... 6
- Embargo of Dissertation ... 7
- Final Public Oral Examination ... 7
- Chemistry Program Timeline ... 8
- Vacation Policy ... 8
- International Travel ... 9
- Responsible Conduct of Research (RCR) ... 9
- Safety ... 9

STUDENT STATUS
- Enrollment .. 10
- Readmission/Reenrollment .. 10
- In Absentia Status ... 11
- Leave of Absence .. 11
- Termination .. 12
- Dissertation Completion Enrollment (DCE) 12
- Enrollment Terminated/Degree Candidacy Continues (ET/DCC) 12

FUNDING INFORMATION
- Outside Funding ... 13
- Departmental Awards ... 14
- University Awards ... 15
- University Funds ... 15
- The Dean's Fund for Scholarly Travel .. 15
- Assistance with Medical Expenses ... 16

RELATED PROGRAMS AND INSTITUTES
- Program in Neuroscience .. 16
- Princeton Environmental Institute .. 17
- Princeton Institute for the Science and Technology of Materials 17
- Graduate Program in Materials .. 18

CHEMISTRY DEPARTMENT ORGANIZATIONS AND ACTIVITIES
- Corporate Recruiting ... 19
- Female Researchers in Chemistry (FRIC) 19
- Graduate Student Organization (GSO) 19
DEPARTMENT PROGRAM REQUIREMENTS & POLICIES

— Ph.D. Requirements

<table>
<thead>
<tr>
<th></th>
<th>Qualifying Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Course Requirements:</td>
</tr>
<tr>
<td></td>
<td>6 courses (at least 4 5xx-level courses, up to 2 4xx-level courses) with a minimum of 3.0 average</td>
</tr>
<tr>
<td>3</td>
<td>Advisor Selection:</td>
</tr>
<tr>
<td></td>
<td>Active engagement in advisor selection through individual and group meetings, acceptance into a lab by the end of the first year of study</td>
</tr>
<tr>
<td>4</td>
<td>General Examination:</td>
</tr>
<tr>
<td></td>
<td>Preliminary requirements:</td>
</tr>
<tr>
<td></td>
<td>1. overall GPA of 3.0 or better in six courses as described above</td>
</tr>
<tr>
<td></td>
<td>2. satisfactory research progress as evaluated by the research advisor</td>
</tr>
<tr>
<td></td>
<td>Examination before the Generals Committee:</td>
</tr>
<tr>
<td></td>
<td>3. written proposal and oral defense for the chosen area of thesis research</td>
</tr>
<tr>
<td></td>
<td>4. written independent research proposal and its oral defense</td>
</tr>
<tr>
<td>5</td>
<td>Teaching: two semesters at half-time or one semester at full-time</td>
</tr>
<tr>
<td>6</td>
<td>Third Year Seminar Presentation</td>
</tr>
<tr>
<td>7</td>
<td>Out of Field Proposal: second original research proposal</td>
</tr>
<tr>
<td>8</td>
<td>Thesis Completion: progress overseen by thesis committee</td>
</tr>
<tr>
<td>9</td>
<td>Final Public Oral (FPO): thesis defense</td>
</tr>
</tbody>
</table>

— Breadth Requirement

Students are required to demonstrate a breadth of knowledge in the field of Chemistry by passing qualifying exams in at least three of the following subfields: organic chemistry, inorganic chemistry, physical chemistry, biochemistry, and chemical physics.

If a student is unable to take or pass three exams, the student may request approval from the DGS to fulfill the breadth requirement by replacing one or more exams with equivalent graduate-level coursework. This coursework would count within the six courses mandated by the course requirement.
Course Requirements

Students must complete 6 courses in their first year at a B (3.0) average. At least four of these courses must be at a 5xx-level, and two may be at a 4xx-level. 5xx and 4xx courses cannot be taken on the same course material.

Students may choose P/D/F enrollment for one of these six courses with their advisor’s approval.

Courses will be chosen in consultation with the student’s research advisor to best reflect the student’s academic needs and research interests. Students may enroll in courses outside the department and may continue to take additional courses after the completion of the six required throughout their five years of regular enrollment.

Students are strongly encouraged to take one or both of the half-term Writing in Science & Engineering courses as supplementary classes. These courses are non-graded and do not contribute to the fulfillment of the six class requirement. These classes may be taken at any time during the five year program.

WRI 501 introduces students to writing about the scientific literature. It explores how scientific articles are constructed and interpreted, how research findings are presented, and how scientific arguments are developed. Students learn how to engage scientific literature critically, to read and analyze efficiently, to distinguish their own work from previous work, and to cite and report the work of others.

WRI 502 is open to graduate students who have completed sufficient research to begin writing an article for publication. Students develop expertise in scientific writing by drafting a research article based on their original research. Students learn how to recognize and use the persuasive aspects of conventional written structure, how to use analysis, feedback, and revision to develop a strong collaborative writing process, and how to craft clear, concise, and compelling arguments to establish new scientific knowledge.

More information on these classes offered by The Princeton Writing Center and the registration process can be found at www.princeton.edu/writing/wse. Through drop-in hours or scheduled appointments, The Writing Center and its Fellows offer resources to assist in all aspects of the writing process as relates to proposals, manuscripts, developing a thesis and strengthening oral presentation skills.

The completion of the academic course requirement is necessary for attaining the Ph.D. degree. Students are expected to meet these requirements by the end of the second year.

Choosing an Advisor

Incoming students who wish to participate in the optional summer research program must contact faculty directly to arrange an early arrival in their lab. That faculty member will serve as the student’s temporary advisor in the fall unless otherwise noted by the Director of Graduate Studies (DGS). For students arriving in September, the DGS will assign a temporary advisor for the first semester. This advisor will help select fall classes, provide a workspace for the fall semester, and oversee progress in choosing a research group. Incoming students will choose their research advisor after they have properly evaluated research opportunities that are available to them, as described in the following paragraph.

First-year students are required to engage in the advisor selection process which provides the
chance to explore a range of research areas through informal discussions with faculty and their students. They may also meet with the DGS to discuss their research interests. All students must select at least three faculty members whom they will engage to discuss research opportunities over the course of the semester. Students are encouraged to participate in group meetings and discussion with the group members of the faculty of interest, and then choose a research advisor before December 15. It is strongly recommended that the student settle on a research advisor as soon as possible.

With the permission of the DGS, students may choose an advisor from another department, provided their research project relates to chemistry, and that the advisor outside the department agrees to supervise the student.

— The Advisory Committee

After the student has chosen a research advisor, an Advisory Committee will be assigned in consultation with the student and his/her research advisor. This committee, consisting of the advisor and two other faculty members, is designed to follow a student’s progress throughout their Ph.D. work. Occasionally, a student might include a third “optional” faculty member to provide scientific insight; however, this optional member is not an official member of the committee. Official members of the committee must hold the rank of assistant professor or higher, and at least one member (other than the advisor) must be from the Department of Chemistry.

The Advisory Committee will meet with the student according to the following timeline, although the student or a member of the committee may initiate additional meetings as needed.

— At the end of the first academic year, the Advisory Committee will review the student’s academic record, ensure that he or she has met the coursework requirements (and, if not, discuss a plan to satisfy them), and make sure the student is on course for the General Examination. The meeting may be held with the Committee as a group or on an individual basis if schedules do not permit.

— In the third year, the student will invite members of the Advisory Committee to their Third Year Seminar. The student will arrange a meeting with the Advisory Committee or its members individually soon after the third year seminar.

— At least one month before the FPO, the student will generate an original research proposal, not related to thesis research. They will defend this Out of Field Proposal before their Advisory Committee plus one additional faculty member selected by the student to serve as a member of the four-person Thesis Committee.

— The Thesis Committee will serve as the FPO Committee.
— **Teaching Requirement**

http://gradschool.princeton.edu/policies/ai-training

The teaching requirement is two semesters at half time or one semester full time (20 hr/wk). Students typically satisfy this requirement during the second academic year. International students must demonstrate proficiency in spoken English before they may teach. All first-time teaching assistants are required by the Graduate School to attend a training and orientation course given by the McGraw Center for Teaching and Learning.

— **The General Examination**

http://gradschool.princeton.edu/academics/degree-requirements/phd-requirements/general-examination

The Chemistry Department offers the General Examination during October*, January, and May of the student’s second year. The specific timing of each student’s exam will be determined by the DGS in consultation with the student’s advisor.

The examination consists of four parts, and a student must pass all four. The first part of the examination are the course requirements undertaken in the first year; specifically, overall GPA of 3.0 or better in six graduate-level courses. Part two is satisfactory research progress as evaluated by the research advisor.

Parts three and four consist of seminar-like presentations before the Generals committee. Part three is a written proposal based on the student’s chosen area of thesis research, and the oral defense of that proposal. Part four consists of a written independent research proposal and the oral defense of the work. This proposal is in student’s general area of research, but not part of the student’s thesis research.

The oral portion of the exam generally proceeds as follows: an oral seminar-like presentation to the Generals Committee of the proposed thesis research is followed by questions to test the candidate's preparation to do the thesis research. This part of the exam lasts for approximately one hour. The second section of the oral exam consists of a presentation to the committee, again in a seminar-like manner, of the independent research proposal. Oral examination of this independent proposal will follow. This part of the exam typically takes about 45 minutes.

Immediately following the two oral defenses, the committee will discuss the performance and assign a grade for parts 3 and 4 without a vote from the advisor. The committee then assigns an overall grade of pass, fail, or pass with distinction, for all four parts. Students who successfully pass the General Examination may advance to Ph.D. candidacy.

It is possible, however, that the candidate will pass the first two components but fail to successfully meet the criteria for a pass in one or both the proposals. In such instances, the exam results will be reported to the Graduate School as a failed exam. The committee will

* The October exam period is reserved by the department for exams with special circumstances.
report to the Graduate School an assessment of the student’s performance and selection of one of the following conditions: a Fail with the recommendation to retake the exam within one year, or a Fail with the decision to terminate the student’s enrollment.

If provided the opportunity to retake the exam, the student must do so during the next scheduled examination period unless otherwise recommended by the committee. The retake must be completed by the end of the third year. If he or she fails to successfully pass after one additional opportunity, the student will be terminated from the Ph.D. program, but may still be granted a terminal Master of Arts in Chemistry degree from the Department.

Guidelines for the written proposals and oral defense are given in the Appendix to this Handbook.

Academic Evaluation

Students are evaluated on an on-going basis by their research advisor, their Advisory Committee, and the Director of Graduate Studies. Reenrollment to a subsequent academic year is based on progress and conduct during the previous year.

Withdrawal from the graduate program may be required in the following instances:

1. Student has failed to satisfy all four components of the General Examination by the end of the third year.
2. Student has failed the General Exam twice.
3. Student fails to improve research and/or academic performance despite repeated warnings.
4. Disciplinary action imposed by the Graduate School or the Department of Chemistry.

Third Year Seminars

In the third year of study, students present a thirty-minute seminar on their research progress. The focus of the seminar should be on actual research results in the laboratory and not a history of the project. The seminar should be treated as a formal exercise to enhance presentation skills and public speaking abilities, through the preparation of a PowerPoint presentation and the organization of the seminar.

To foster understanding of the different chemical disciplines, third year students are required to attend all seminars. The two best seminar presentations (as judged by a committee of 4th year students) are granted the Third Year Seminar Prize & Hubbell *47 Fund Travel Award, consisting of a cash prize plus an allowance for travel to scientific meetings.

Original Research Proposal

At least one month prior to the FPO, the student will generate a second original research proposal, not directly related to the thesis research, and defend it before the Thesis Advisory Committee.
The proposal must be written and circulated among the Thesis Advisory Committee at least two weeks before the oral presentation date. The student is responsible for organizing the committee members to meet for this oral exam and informing the Graduate Administrator prior to the date agreed upon. The committee records a grade for the written proposal and its oral defense. Grading is on a scale from Excellent to Fail. All members of the Thesis Advisory Committee must participate in the OFP, attendance via Skype for up to one committee member is acceptable.

See the Appendix of this Handbook for preparation guidelines for the original proposal.

Dissertation
(http://gradschool.princeton.edu/academics/degree-requirements/phd-requirements/dissertation-and-fpo)

Students satisfy the bulk of the formal course and examination requirements for the Ph.D. by the end of the second year of graduate study. The remainder of the program is devoted to independent research work leading to the writing of a dissertation.

The dissertation must show that the candidate has technical mastery of the field and is capable of doing independent research. This study must enlarge or modify current knowledge in a field or present a significant new interpretation of known materials.

The dissertation is reviewed and approved by at least two principal readers before being submitted for acceptance to the Graduate School. The thesis advisor and a second committee member will serve as readers. The dissertation should first be given to the advisor and, once it has been approved by the advisor, it should be given to the second reader. At least two weeks are to be allowed for each reader. Time must also be set aside to respond to the readers suggested changes. At least one of the thesis readers must be from the Department of Chemistry.

The Graduate School requires all reader’s reports and other documentation be received in their office at least two weeks before the Final Public Oral examination. Therefore, students should allow five weeks from the date of giving the thesis to the second reader to the date of the FPO. A Thesis and FPO checklist can be found in the Appendix of this Handbook.

If the candidate and/or the advisor want the dissertation to be reviewed for possible patentable results and subsequent patent application either by the University or by a non-University agent, or have the dissertation reviewed by an outside sponsor for the proprietary information or results, these processes must be completed before the department requests to hold the Final Public Oral examination (for more information, contact the Office of Technology and Intellectual Property Licensing, New South Building.)

In order that certain minimum standards of uniformity are observed in the publishing process, the University archivist has established a format for the thesis and procedures for its deposition with the University archives. See the Mudd Library website for specific details: (http://rbsc.princeton.edu/policies/masters-theses-phd-dissertations-submission-guidelines).
– **Embargo of Dissertation**

It is recognized by the Graduate School that under certain circumstances, the student may wish to withhold the publication of the dissertation. This can be achieved during the dissertation process. The duration of the embargo period is two years and is renewable. Students who wish to embargo their dissertation must have the approval of their advisor or Thesis Committee in writing, as well as the approval of the Graduate School. For further details, see http://gradschool.princeton.edu/policies/embargo.

– **Final Public Oral Examination**

http://gradschool.princeton.edu/academics/degree-requirements/phd-requirements/dissertation-and-fpo

The Advisory Committee (plus one additional faculty member, selected by the student and his/her advisor) serves as the Thesis Committee and conducts the Final Public Oral (FPO) examination, the last formal requirement for the Ph.D.

The FPO consists of a public lecture on the thesis research, usually of about one hour in length. During this presentation, the public and the Thesis Committee may question the student about the research. Following the thesis presentation, the committee meets to evaluate the student’s performance. Grading is on a scale from Excellent to Fail. Marks for the written proposal and its oral defense are combined for an overall Final Public Oral Examination grade. If the assigned grade is Passing or better, the requirements for the Ph.D. have been completed and the degree is awarded.

Students who successfully defend the FPO by the date set each year by the Graduate School in May are invited to participate in Commencement. Students who defend later may participate in Commencement the following year. See the degree deadline dates here: http://gradschool.princeton.edu/academics/degree-requirements/phd-requirements/dissertation-and-fpo/advanced-degree-application.

If the student does not pass the FPO examination, he or she may request to retake the examination within one year. If unsuccessful a second time, the candidate is not permitted another opportunity to retake the examination and Ph.D. candidacy is terminated.

Additional information about the degree application and completion process may be found on the Graduate School website, http://gradschool.princeton.edu/academics/degree-requirements/phd-requirements/dissertation-and-fpo/advanced-degree-application and in the Appendix of this Handbook.
Chemistry Program Timeline

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
<td>Spring</td>
<td>Fall</td>
</tr>
<tr>
<td>University and Departmental Support</td>
<td>Teaching (TA support) or Research Grant Support</td>
<td>Taylor Fellowship</td>
<td>Research Grant Support</td>
<td></td>
</tr>
<tr>
<td>Advisory Committee Meeting</td>
</tr>
<tr>
<td>3 Graduate Courses</td>
<td>Generals Exam</td>
<td>Third-Year Seminars</td>
<td>Second Independent Proposal, Dissertation, and Final Public Oral Defense</td>
<td></td>
</tr>
<tr>
<td>1st Year Advisor Selection</td>
<td></td>
<td>Laboratory Research</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Except for the relatively well-structured Year 1, Year 2, and Year 3, this Program Timeline is intended only to provide an overview; the actual duration over which a student earns his or her Ph.D. degree is expected to vary.

Vacation Policy

(https://www.princeton.edu/gradschool/academics/policies/student_vacation_time)

Graduate study is understood to be a full-time commitment on the part of students. During an academic year, defined as September 1 to August 31, graduate student degree candidates may take up to (but no more than) four weeks of vacation, including any days taken during regular University holidays and scheduled recesses (e.g., the Fall and Spring Term breaks and inter-term break). The specific periods taken as vacation must not conflict with the student’s academic responsibilities, coursework, research, or teaching. **Before scheduling vacations, students must talk with their advisor.**

If a student is an Assistant in Instruction, they must also secure leave approval from their teaching supervisor(s). As a general rule, AI’s will NOT be allowed to take vacation during weeks that classes are in session or during reading period and exam time. AI’s who take vacation without receiving leave approval from their teaching supervisor(s), may be considered no longer in good academic standing.

International students who plan to travel abroad must contact the University’s Davis International Center to ensure that they comply with their visa regulations and do not experience any difficulty returning to the United States.
— **International Travel**

(https://www.princeton.edu/travel/graduate-students)

The Graduate School requires that all graduate students on University sponsored international travel register their trips in the University’s Travel Registration database. This applies to all international travels that are funded, entirely or in part, by Princeton funds or funds processed through University accounts. Students will be asked to submit emergency contact, transportation and housing information, to complete a “Terms and Conditions” form, and to obtain an International SOS card.

— **Responsible Conduct of Research (RCR)**

(https://gradschool.princeton.edu/academics/academic-and-research-integrity)

All graduate students are required to complete a course in the responsible conduct of research as part of their graduate training and professional development. In Chemistry, this is conducted through CHM 500, a 6-week, 3-hour-per-week course. This mandatory course is offered three times in both the fall and spring semesters (CHM 500A, CHM 500B, and CHM 500C). In the first 6 weeks of the semester, two sessions will be held concurrently, and the third session for the final six weeks. The Chemistry Office of Graduate Studies will assign students to different sections; the occasional conflict of course schedule will be handled on a case-by-case basis.

— **Safety**

(https://www.princeton.edu/ehs)

The Frick Chemistry Lab Emergency Action Plan can be found in the Appendix of this Handbook.

— It is important that each student read the Frick Chemistry Laboratory manual thoroughly. The guide to safety and facilities can be found online at this link: http://chemistry.princeton.edu/sites/default/files/Facilities/Frick%20Lab%20Emergency%20Action%20Plan%207-28-14_0.pdf

— All students must take both Fire Extinguisher Training and General Laboratory Safety Training offered by Princeton’s Offices of Public Safety and Environmental Health and Safety (EHS) respectively. Students who do not take these courses will not be permitted to work in a lab or serve as teaching assistants. Visit http://web.princeton.edu/sites/ehs/Training/ to view the current lab safety training schedule and pre-register for class.

— Appropriate clothing, footwear and eye protection must be worn in the experimental labs at all times.

— Two lab coats will be provided to each student working in a wet lab and these should be worn whenever the student is in the lab.

— The Department offers coverage for most out of pocket expenses related to the purchase of prescription safety glasses, reimbursing up to $200 for a single pair of safety glasses.
at participating eyewear stores. Please contact Alice Monachello at amonache@princeton.edu if you plan to participate in this program.

— Any student injured while working in a lab must file an injury report with Alice Monachello, the Department Facilities Manager.

— In the event of a lab emergency, costs incurred by graduate students for ambulance transport will be covered by the University. This policy is in place to ensure that medical assistance is provided as quickly as possible and to prevent any hesitation in calling for emergency services if needed.

— Students should go to the EHS website, http://www.princeton.edu/ehs, for further information on safety issues, hazardous materials, etc.

STUDENT STATUS

— **Enrollment**

http://gradschool.princeton.edu/academics/enrollment-statuses

Incoming graduate students are considered enrolled from the date of registration in September to the end of the following June. Upon readmission (see below), he/she will advance to the next year of study beginning July 1 and continuing to the end of the following June.

Ph.D. candidates who have completed their full course of enrollment (five years) but have not yet defended their thesis, remain enrolled through August 31 of their last year of study. On September 1 the status changes to Dissertation Completion Enrollment (DCE) or, in some circumstances, to Enrollment Terminated/Degree Candidacy Continues (ET/DCC). See below for more information on DCE and ET/DCC status.

— **Readmission/Reenrollment**

http://gradschool.princeton.edu/academics/degree-requirements/standard-requirements/reenrollment

Readmission or reenrollment is the annual academic review of current graduate students’ academic progress and the department’s recommendation as to whether students should or should not continue in their program. The purpose of reenrollment is to give students, their departments, and the Graduate School a clear picture of student progress toward degree objectives, to identify and correct problems, and to set or confirm academic goals for each student in the next year of study.

All students must apply for reenrollment in the spring of each year of the approved program of study in which they are enrolled. Reenrollment, which must be recommended by the student’s department, entitles students to continue to consult faculty members and to use laboratories, libraries, computing resources, and other University facilities.

Satisfactory academic progress is measured by the department. For students who have not yet taken the General Examination, this includes completing high-quality work in courses and
seminars and performing effectively in their advisor’s research group. For students who have passed the General Examination, significant progress toward the completion of the dissertation is the central criterion.

An additional professional development requirement is documented each year in reenrollment, the annual completion of an Individual Development Plan (IDP). The department requires completion of the AAAS myIDP (http://myidp.sciencecareers.org/) module and submission of the summary page each year in reenrollment.

– **In Absentia Status**

Students may be recommended for readmission with ‘in absentia’ status if they need to use educational resources that are not available in Princeton. In absentia status is granted for one year at a time, up to two years, to students who have successfully completed their general examination.

Students may be recommended for ‘in absentia’ status for either a term or a year if the following criteria are met:

– a need to use educational resources that cannot be obtained in Princeton;
– the work away from Princeton will contribute to the student's progress to the degree;
– the student will not physically live in Princeton or the immediate vicinity, i.e. will not be in residence.

Students in absentia are considered fully enrolled graduate students and enjoy the same health insurance benefits as students in residence.

In the Chemistry Department, ‘in absentia’ status is typically granted to students whose academic advisor leaves Princeton for another university. Such students continue to work with their advisor at the new institution but receive a Princeton degree. Students who wish to perform research at a national laboratory or other off-site research facility may also apply for in absentia status.

– **Leave of Absence**

At the recommendation of the Director of Graduate Studies, the Graduate School may grant a year's leave of absence at any one time to students in good standing. Leaves are granted for personal reasons, when the student will not be actively pursuing an academic course of study in fulfillment of Princeton's degree requirements.

Students on leave have withdrawn formally from the graduate program and are not considered enrolled or registered students. Accordingly, no University student benefits continue. An extension of up to one additional year may be granted if the student so requests, but no longer. At that point, if the student does not return to the graduate program, his or her degree candidacy is terminated; in order to return to graduate work at a later time, the student must formally reapply. Leaves should be timed, whenever possible, to come at the end of a term and preferably at the end of a full academic year. Readmission after leave is subject to confirmation of continued professional suitability and a written request for readmission. As the student’s original advisor is not required to readmit the student to their research group,
additional terms set forth by a faculty committee within the student’s subfield may be required for readmission.

Leaves are not granted to students who:

- have completed less than one full term of enrollment in residence, OR
- are scheduled to take their General Examination in the term for which the leave is being requested, OR
- will be working essentially full time on their Princeton degree requirements, although away from Princeton (for which in absentia status is normally recommended).

– Termination

The Graduate School may also terminate a student’s degree candidacy when, upon the recommendation of the department, the student has not made satisfactory academic progress or when a student on leave has not requested reenrollment. In the case of Ph.D. students in particular, degree candidacy terminates automatically after a second failure of the General Examination or in cases where the student has not maintained regular contact with the department and dissertation adviser.

– Dissertation Completion Enrollment (DCE)

DCE status carries most of the benefits of enrolled student status and as DCE students must be working full time on completing their dissertation, they may not enroll in courses. Students may first choose DCE status in the last year of their regular academic program and it may then be held continuously for up to two years.

DCE status ends:

- when the student successfully completes and defends the dissertation OR
- when the student chooses not to apply for reenrollment OR
- when the department does not recommend the student for reenrollment OR
- when the two-year period of DCE eligibility expires. Non-graduating students leaving DCE status will be given ET/DCC status as defined below.

Once having left DCE status, the student cannot apply to return to DCE status; enrollment in DCE status must be continuous, beginning immediately after the department’s regular program length has ended, up to the two-year limit.

– Enrollment Terminated/Degree Candidacy Continues (ET/DCC)

A student enters ET/DCC status if they are beyond the department’s regular program length, are not in DCE status and have not graduated. ET/DCC is an unenrolled status in which students are ineligible for the student benefits that come with formal enrollment, including DCE status. For ET/DCC students, library access and student borrowing privileges (for those in Princeton or the vicinity), and e-mail and computer account access will continue for a period of one year after entering ET/DCC status.
If a student presents a doctoral dissertation more than five years after he or she has passed the General Examination, the department is not automatically obliged to receive it for consideration.

FUNDING INFORMATION

Students in the Chemistry department are provided funding for their period of enrollment, usually 5 years. For the first-year of study, the Graduate School provides fellowship and tuition payment; in subsequent years, students are funded through department funds, assistantships in instruction (teaching positions), the third year Taylor Fellowship, research grants, or a combination thereof.

Students who work as Assistants in Instruction (AI’s) earn slightly more than students who work in the laboratory as Assistants in Research (AR’s).

Outside Funding
(http://www.princeton.edu/gradschool/financial/fellowships/external)

Students are encouraged to apply for outside sources of funding. (The University gives students who receive outside funding an additional $4,000 above the standard stipend for each year that they hold the outside funding. If the student already receives additional funds above the standard stipend through a University or Departmental Award such as a Centennial Fellowship or a Hugh Stott Taylor Award (HST), no further additional funds will be provided unless the amount is less than $4,000 in which case it will be supplemented to reach a total of $4,000.

External funding can be explored in Pivot (http://pivot.cos.com/funding_main). Outside opportunities include:

- **NSF Graduate Research Fellowship**: National Science Foundation fellowships for US citizens & permanent residents in their first or second year of graduate study. Apply in summer/early fall, deadline first week of November.

- **NDSEG Fellowship**: National Defense Science and Engineering Graduate Fellowships for US citizens/permanent residents; January application deadline.

- **DOE Computational Science Fellowship**: Four-year fellowship for computational scientists in their first or second year of graduate study. The fellowship includes research opportunity at a DOE laboratory; US citizens/permanent residents whose research includes high-performance computing. Application deadline is mid-January.

- **HHMI International Student Research Fellowship**: International students in their third to fifth year of study are eligible for nomination by faculty and reviewed for candidacy by the Graduate School to be considered for the Howard Hughes International Student Research Fellowship.
— **Hertz Foundation Graduate Fellowship**: For US citizens/permanent residents who are willing to morally commit to make their skills available to the United States in time of national emergency. Evidence of exceptional creativity, broad understanding of physical principles and outstanding potential for innovative research is expected. Application deadline is the end of October.

— **Ford Foundation Fellowships**: Predoctoral, dissertation and post-doctoral fellowships for US citizens/permanent residents who are planning careers in university teaching/research. Deadline is November/December.

— **Dept. of Homeland Security Fellowship**: U.S. citizens may apply in spring of first year of graduate study. Annual award includes summer internship and probable employment after degree completion.

— **Departmental Awards**

The Chemistry Department offers numerous fellowships and awards to recognize outstanding students. These include:

Teaching Awards:

— **Pickering Teaching Awards** – Cash prizes granted each year to superb Assistants in Instruction, typically those teaching for the first time.

— **Hubert Alyea ’24 Teaching Award** – Recognizes upper-class students who have excelled at undergraduate teaching throughout their graduate career.

— **Sokol Fellowship** – Recognizes superb Assistants in Instruction who are interested in teaching after degree completion.

Merit Awards:

— **Badin *45 Graduate Student Prize**: Cash award granted every other year to the department’s top second-year graduate student.

— **Bristol-Myers Squibb Fellowship in Organic Synthesis**: Includes fellowship support, travel expenses to scientific meetings, a mentor at BMS, and the opportunity to speak at research symposia at both Princeton and BMS.

— **Eli-Lilly Edward C. Taylor Fellowship in Chemistry**: For outstanding post-graduates graduate students interested in the fields of biochemistry and organic chemistry.

— **First Year Fellowships**: Awarded to the top first-year students, these fellowships provide support replacing the First Year Science and Engineering Fellowship.

— **Patchett Summer Fellowship**: Acknowledges outstanding senior graduate students in organic chemistry.

— **Third Year Seminar Award & Hubbell ’47 Fund Travel Prize**: Granted to the
two highest rated Third Year Seminar speakers each year, includes educational/travel expense account and cash prize.

Department Travel Grant

The department provides each post-generals graduate student a travel grant of up to $1,000 to support domestic or international travel to a scientific conference. Funds can be used for conference registration, travel and lodging with the approval of the student’s advisor prior to June 30th of the student’s fifth year of study.

– **University Awards**

The Chemistry Department may nominate an outstanding student for a University-wide award. These honors include:

- **APGA Teaching Prize** – Cash award for outstanding AI’s across all disciplines, relies heavily on recommendations from undergraduate students

- **Grimm Memorial Prize** – For outstanding graduate students in computational physics

- **Honorific Fellowships** – The highest honor bestowed by the Graduate School, these one-year fellowships are awarded to top graduate students across all disciplines in the final year of enrollment.

University Funds

The University also has limited funds available to assist graduate students with some travel and medical expenses. These funds include:

– **The Dean’s Fund for Scholarly Travel**

The Graduate School offers grants of up to $600 to cover travel costs for students invited to present a paper at conferences and professional meetings. Students are encouraged to apply for assistance as soon as they receive an invitation to present a paper. There are three application deadlines per year, September 1, December 1 and March 1.

Applicants must have been invited to deliver a paper that represents their own work and must show proof of a paper’s acceptance at the conference. Giving a poster presentation, serving as a discussant or respondent on a panel, giving a job talk, etc., do not qualify for support. Eligibility is restricted to Ph.D. students who are third year through the first DCE year. Among science and engineering students, preference is given in higher years of study (e.g., 4th, 5th, and DCE). There is a short application form requiring the student’s advisor’s review and approval.

— **Assistance with Medical Expenses**

Special Graduate School funds exist to assist enrolled graduate students with unreimbursed medical expenses which create a financial hardship for them. Assistance takes the form of a grant to reimburse expenses not covered by insurance. Students must first submit insurance claims and determine out-of-pocket expenses before applying for assistance through these funds.

RELATED PROGRAMS AND INSTITUTES

— **Program in Neuroscience**
 (https://pni.princeton.edu/graduate-program/joint-graduate-degree-program)

Students may earn a degree of Doctor of Philosophy in Chemistry and Neuroscience through the interdisciplinary Program in Neuroscience. The program encourages the serious study of molecular, cellular, developmental and systems neuroscience as it interfaces with cognitive and behavioral research. Current examples at Princeton include: molecular, genetic and pharmacologic analysis of learning and memory, the role of neural stem cells in the adult brain, viral infections of the nervous system, optical and electrical recordings of neuronal function, brain imaging studies of cognitive functions such as attention and memory in humans, and mathematical and computational analysis of neural network function.

Upon entering the program, students select an advisor who is normally a member of the student’s home department and also an affiliate of the Princeton Neuroscience Institute. Students must satisfy the normal pre-general examination requirements and pass the general examination of their respective home departments. In addition to meeting their home department’s Ph.D. requirements, students in the Joint Graduate Degree Program in Neuroscience must meet all of the following requirements: at least one member of the student’s thesis committee must be a core faculty member of the Princeton Neuroscience Institute; the student’s Ph.D. thesis research should have a significant neuroscience component; and the student must take one of the following four courses: NEU 501a, NEU 501b, NEU 502a, or NEU 502b. Additionally, all students in the joint program are expected to participate in the neuroscience seminar (NEU 511), which meets several times per semester.

Interested students should register as members of the Joint Graduate Degree Program in Neuroscience after their general exam. This is done by obtaining approval from (a) their advisor; (b) the director of graduate studies (DGS) of their home department; (c) the DGS of the Princeton Neuroscience Institute; and then sending these approvals to the Student Services Manager for the Princeton Neuroscience Institute.
Princeton Environmental Institute
(http://www.princeton.edu/pei/grads/)

The Princeton Environmental Institute (PEI) is an interdisciplinary research program involving more than fifty associated faculty members in the natural sciences, engineering, social sciences and humanities. The program focuses chiefly in the sciences, with particular strengths in global change, biogeochemical cycles, molecular geochemistry, biodiversity and conservation, and environmental science and policy. It is organized principally through its four centers: the Carbon Mitigation Initiative, the Carbon Modeling Consortium, the Center for Environmental BioInorganic Chemistry, and the Center for Biocomplexity. In addition, individual faculty members conduct their own environmental research.

A central component of the PEI graduate program is the Science, Technology, and Environmental Policy Program (PEI-STEP). This two-year program enables participating graduate students to add a policy dimension to their basic science or technology work. PEI-STEP students write an independent paper on their policy research, which is the equivalent of a chapter in the thesis. Students who complete PEI-STEP are awarded the Graduate Certificate in Science, Technology and Public Policy from the Woodrow Wilson School of Public and International Affairs.

Princeton Institute for the Science and Technology of Materials
(http://www.princeton.edu/prism/academics/graduate/)

Several faculty in the Department of Chemistry are affiliated with the Princeton Institute for the Science and Technology of Materials (PRISM), a multidisciplinary center in the general field of materials science. PRISM was formed in November, 2003 through the combination of Princeton Materials Institute and the Center for Photonics and Optoelectronic Materials.

PRISM’s mission includes graduate and undergraduate education and research which will have a long-term impact on society. Key elements of PRISM are the integration of the sciences and engineering, with work spanning from fundamental theory through to applications, and the integration of their work with that outside Princeton, especially with industry.

A special focus of PRISM is the rapidly growing intersection of hard materials (such as conventional semiconductors, metals, ceramics), and soft materials (polymers, organic and biological molecules, fluids, cells, proteins, etc…) and all of the fields which fundamentally underpin this work. Work at this intersection includes organic and large-area electronics, self-organizing structures, biomedical imaging, nanostructures, microfluidics, bio-chips, quantum information systems, and many other emerging opportunities.

PRISM-associated facilities on campus include the Micro/nano Fabrication Lab, the Imaging and Analysis Center, the Keck Computational Center, and the Ultrafast Laser Facility.

Research at PRISM is funded by a wide range of government agencies, industries, and foundations. Programs of special note at PRISM include the Princeton Center for Complex Materials (PCCM), the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program, NSF Engineering Research Center for Mid-InfraRed technologies for Health and the Environment (MIRTHE) and several multi-disciplinary Centers in emerging research fields funded by the New Jersey Commission on Science and Technology (NJCST).
Graduate Program in Materials
(http://www.princeton.edu/prism/academics/graduate/application/)

The Graduate Program in Materials, an interdisciplinary Ph.D. program, allows students to pursue materials-related research and education in coordination with engineering and science departments affiliated with PRISM and to receive a Ph.D. in Chemistry and Materials. The program draws upon the resources of industrial affiliates as well as other materials-oriented research centers within the University. The breadth and flexibility of the program accommodate a wide range of interests and give students both the theoretical foundation and practical knowledge they need to function in the rapidly developing field of modern materials. The following is from the PRISM website as it pertains to Chemistry:

Materials in Chemistry

Chemistry and materials go hand-in-hand in many ways, and materials chemistry is presently one of the most vital and expanding areas in research and education. Truly interdisciplinary research is essential for progress in this area, with the resulting discoveries and insights that such an interdisciplinary approach in science often yields.

Research in academic, industrial, and government institutions is directed towards answering fundamental questions in chemistry that may lead to new materials, the application of chemical and materials knowledge for improving the performance of devices and systems, and making possible the technologies and processes of the future. Materials-related research in chemistry at Princeton encompasses many of the diverse new paths this type of research presently embodies.

Our program ranges from theoretical, through basic science, to more applied areas. Research in theoretical materials chemistry includes, for example, the molecular dynamics simulation of materials properties and the electronic structure theory of surfaces, molecular crystals, and conjugated polymers. There are a wide variety of opportunities to conduct research on materials surfaces, including the study of the adsorption and spectroscopy of molecules and chemical reactions on transition-metal surfaces, and the synthesis and characterization of oxide-supported organometallic complexes. There are also research efforts in the assembly of biogenic hard materials, photochemical energy conversion, solar energy conversion and electrochemistry, the synthesis and characterization of solids with exotic electronic and magnetic properties, and optoelectronic properties of organic thin films.

The materials chemistry program at Princeton provides a unique interdisciplinary opportunity for students to pursue their interests in this rapidly advancing field. Students may tailor their program by combining different aspects of education and research in materials and chemistry and other areas such as electronics, physics, or biology to create their own interdisciplinary specialty.

Requirements for a Ph.D. in Chemistry & Materials are:

- 2 or 3 courses in Materials Science & Engineering at the 500 level.
- Ph.D. thesis in the area of Chemistry of Materials
- A materials science professor from outside the Department of Chemistry must be on the Thesis Committee.
CHEMISTRY DEPARTMENT ORGANIZATIONS AND ACTIVITIES

– **Corporate Recruiting**

Pharmaceutical, chemical and energy companies conduct on-site interviews and information sessions for interested graduate and postdoctoral students.

– **Women Researchers in Chemistry (WIC)**

Open to all women in the chemistry department (graduate students, post-docs, faculty and staff), FRIC organizes a variety of events to foster a vibrant and strong community and raise awareness of the historic and future states of gender relations and work-life balance in the global chemistry community.

– **Graduate Student Organization (GSO)**

The Chemistry GSO comprises graduate students from all years of study. The GSO serves as a communication channel between the graduate students and the faculty through regular meetings with the Graduate Work Committee to discuss graduate student academic policies and other concerns. The GSO organizes social and outreach activities, and assists with recruitment and orientation. It sponsors the Student Invited Lecture Series, the Career Seminar Series, a fall Fellowship Workshop and General Exam Information Session.

– **Social Hour**

Graduate students and postdocs mingle on Friday afternoons in the Atrium or, in nice weather, in the Frick South Courtyard. Cold drinks, beer, soda and snacks are provided.

– **Sports Teams**

Chemistry graduate students regularly compete against other departments in such sports as softball, basketball, and soccer. Students play on many University athletic club teams during intramural season and in informal pick-up games during the summer.

– **Frickmas**

Each December, the third-year graduate students host a holiday party for graduate students, faculty and staff. The event’s high point is a skit that manages to roast every faculty member in one light-hearted way or another!

– **Fricknic**

Organized by first-year graduate students, Fricknic is a June picnic for graduate students, post-docs, faculty and staff which includes a barbecue and a variety of games and activities.
CHEMISTRY DEPARTMENT ADMINISTRATION & STAFF

Department Chair: Gregory Scholes
125 Frick, 8-0729; gscholes@princeton.edu

Associate Chair: Paul Chirik
292 Frick, 8-4130, pchirik@princeton.edu

Director of Graduate Studies: Robert Knowles
188 Frick, 8-7020, rknowles@princeton.edu

Graduate Administrator: Meredith LaSalle-Tarantin
A21 Frick, 8-4116, ml28@princeton.edu

Administrative Office Staff:

Janet Gruschow
Department Manager
A24 Frick, 8-3969,
gruschow@princeton.edu

Hillary Milne
Business Manager
A23 Frick, 8-2436,
hm9309@princeton.edu

Shafon McNeil
Undergraduate Administrator
A22 Frick, 8-5015,
smcneil@princeton.edu

Thomson Batidzirai
Grants Manager
A24B Frick, 8-4515

TBA
Facilities Manager
189 Frick, 8-3920,
@princeton.edu

TBA
Front Office Coordinator
A25 Frick, 8-3900,

Tiffany Davis
Assistant to the Chair
121 Frick, 8-3651,
tndavis@princeton.edu

Wendy Arterburn
Financial Administrator
A24A Frick, 8-7663,
warterbu@princeton.edu

Susan VanderKam
Manager, Diversity Initiatives
284 Frick, 8-1727
skillian@princeton.edu

Technical Staff:

Patrick Andrae
Laboratory Coordinator

István Pelczer
Sr. NMR Spectroscopist

Ken Conover
NMR Coordinator

Ginny Sari
Sr. Laboratory Coordinator

John Eng
Analytical Chemist/Experimental Design

Mike Souza
Glassblower

Doug Rosso
Senior IT Manager

Kitty Wagner
Lecture Demonstrator
CHEMISTRY DEPARTMENT FACULTY

* denotes faculty not taking graduate student advisees

Andrew Bocarsly
Inorganic materials chemistry, chemistry of alternate energy systems, chemical mitigation of carbon dioxide, electrochemistry, photochemistry, semiconductor photoelectrochemistry, coordination chemistry. Affiliated with Princeton Institute for the Science and Technology of Materials (PRISM)
Office: 388 Frick Phone: 8-3888 bocarsly@princeton.edu

Roberto Car
Chemical physics and materials science; electronic structure theory and ab-initio molecular dynamics; computer modeling and simulation of solids, liquids, disordered systems, and molecular structures; structural phase transitions and chemical reactions. Joint Appointment with Princeton Institute for the Science and Technology of Materials (PRISM)
Office: 153 Frick Phone: 8-2534/ 8-7480 rcar@princeton.edu

Jannette Carey
Biophysical chemistry: protein and nucleic acid structure, function, and interactions; protein folding and stability. Affiliated with Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Molecular Biology.
Office: 360 Frick Phone: 8-1631 jcarey@princeton.edu

Robert J. Cava
Materials chemistry; synthesis of new oxide, intermetallic, pnictide, and chalcogenide compounds and characterization of their crystal structures and electronic and magnetic properties. Joint Appointment with Princeton Institute for the Science and Technology of Materials (PRISM)
Office: A88 Frick Phone: 8-0016 rcava@princeton.edu

Paul Chirik
Inorganic, Organometallic, and Organic Chemistry: Base metal catalysis directed toward commodity and fine chemical synthesis, energy efficient methods for N2 functionalization and understanding electronic structure of redox-active metal-ligand complexes.
Office: 292 Frick Phone: 8-4130 pchirik@princeton.edu

John T. Groves
The interface of organic, inorganic and biological chemistry. Metalloenzymes and biomimetic redox catalysts, especially those containing iron and manganese, that can transform C-H bonds. Affiliated with Princeton Institute for the Science and Technology of Materials (PRISM) and the Center for Environmental Bioinorganic Chemistry (CEBIC).
Office: 231 Frick Phone: 8-3593 jtgroves@princeton.edu

Michael Hecht
Synthetic biology: from protein design to artificial genomes, and Alzheimer's disease: molecular underpinnings and the search for new therapeutics. Affiliated with Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Molecular Biology.
Office: 330 Frick Phone: 8-2901 hecht@princeton.edu
William Jacobs
Identifying general principles governing the assembly of complex, molecular-scale structures, investigating how the heterogeneity of multicomponent systems and the production of entropy by active processes affect the properties of self-assembled structures.
Office: 385 Frick Phone: 8-6513 wjacobs@princeton.edu

Ralph Kleiner
Chemical biology, biochemistry, and cell biology: investigating the chemical and biochemical mechanisms controlling the function and integrity of cellular nucleic acids in biological processes of biomedical interest.
Office: 359 Frick Phone: 8-1654 rkleiner@princeton.edu

Robert Knowles
Synthetic organic chemistry: development of novel and selective catalytic transformations, unconventional redox processes, molecular recognition of transition states, complex target synthesis.
Office: 188 Frick Phone: 8-7020 rknowles@princeton.edu

David C. MacMillan
Organic synthesis and catalysis: new concepts in synthetic organic chemistry involving organocatalysis, organo-cascade catalysis, metal-mediated catalysis, and total synthesis of natural products and pharmaceuticals.
Office: 192 Frick Phone: 8-3916 dmacmill@princeton.edu

Tom Muir
Organic Chemistry, Biochemistry and Cell Biology: Investigating the physiochemical basis of protein function in complex systems of biomedical interest with new chemical biology technologies
Office: 325 Frick Phone: 8-5778 muir@princeton.edu

Joshua Rabinowitz
Biochemical kinetics; cellular metabolism; chemical basis of complex biological processes. Joint appointment with the Lewis-Sigler Institute for Integrative Genomics.
Office: 285 Frick Phone: 8-8985 jrabinow@princeton.edu

Herschel Rabitz
Office: 253 Frick Phone: 8-3917 hrabitz@princeton.edu

Gregory Scholes
Physical chemistry studying molecular interaction after the absorption of light, quantum-mechanics, quantum information science, and organic photovoltaics.
Office: 125 Frick Phone: 8-0729 gscholes@princeton.edu
Leslie Schoop
Research aiming to bridge the gap between chemistry and physics, using chemical principles to design new crystalline materials that have exotic physical properties.
Office: 353 Frick Phone: 8-9390 lschoop@princeton.edu

Jeffrey Schwartz*
Office: 390 Frick Phone: 8-3926 jschwart@princeton.edu

Annabella Selloni
Theoretical/computational first principles electronic structure and molecular dynamics studies of materials properties, surfaces and interfaces, nanostructured materials; surface chemistry, heterogeneous catalysis, electrochemistry, photocatalysis.
Office: 155 Frick Phone: 8-3837 aselloni@princeton.edu

Martin Semmelhack*
Application of organic chemistry to problems in biology. The chemistry of bacterial signaling. Isolation and structure determination of new signaling molecules, synthesis of the signals and analog structures, and evaluation of their biological activity.
Office: 361 Frick Phone: 8-5501 mfshack@princeton.edu

Mohammad Seyedsayamdost
Chemical biology and mechanistic enzymology. Investigation of microbial symbiotic interactions as a means to discover and characterize new small molecules with potential pharmaceutical value, exploring novel biosynthetic pathways and enzyme-catalyzed transformations involved in the production of these small molecules to illuminate the chemistry underlying environmentally important symbioses.
Office: 333 Frick Phone: 8-5941 mrseyed@princeton.edu

Erik J. Sorensen
Organic chemistry, chemical synthesis of bioactive natural products and molecular probes for biological research, bioinspired strategies for chemical synthesis, architectural self-constructions, novel methods for synthesis.
Office: 132 Frick Phone: 8-8135 ejs@princeton.edu

Salvatore Torquato
Office: 160 Frick Phone: 8-3341 torquato@princeton.edu

Marissa Weichman
Novel spectroscopic tools to examine chemical interactions in nanoscale and hybrid light-matter systems, harness control of these systems, and exploring both their fundamental properties and broader applications in catalysis, synthesis, and materials.
Office: 229 Frick Phone: 8-0926 weichman@princeton.edu

Haw Yang
Physical chemistry, reaction dynamics in complex systems; development and application of single-molecule spectroscopy and methods to elucidate functional consequences in protein conformational dynamics in vitro and in living cells, self-assembly of biological macromolecules and nanostructures, biofuels and basic sciences in sustainable energy solutions.
Office: 225 Frick Phone: 8-3578 hawayang@princeton.edu
— Associated Faculty

Bonnie Bassler, Department of Molecular Biology
Cell-to-cell communication in bacteria
Office: 329 Lewis Thomas Lab Phone: 8-2857 bbassler@princeton.edu

Frederick M. Hughson, Department of Molecular Biology
Biochemical and structural methods, including X-ray crystallography, applied to macromolecular assemblies that mediate complex biological processes (intracellular trafficking, cell-cell communication)
Office: 215 Schultz Lab Phone: 8-4982 hughson@princeton.edu

Bruce Koel, Department of Chemical and Biological Engineering
Surface chemistry and interfacial processes: heterogeneous catalysis of hydrocarbon conversion; solar photochemistry; electrocatalytic processes; fuel cells; plasma-surface interactions; environmental remediation by iron nanoparticles
Office: A311 E-Quad Phone: 8-4524 bkoel@princeton.edu

Alexei Korennykh, Department of Molecular Biology
Quantitative mass spectrometry based proteomics for analysis of eukaryotic chromatin structure and function., structural biology and mechanisms of signal transduction in stress and immune responses
Office: 216 Schultz Lab Phone: 8-6071 akorenny@princeton.edu

A. James Link, Department of Chemical and Biological Engineering
Applying the tools of protein engineering and covalent chemistry to engineer peptides with and proteins with conformational constraints, looking to nature for inspiration and strategies for conformationally-constraining peptides
Office: 207 Hoyt Laboratory Phone: 8-7191 ajlink@princeton.edu

Yueh-Lin (Lynn) Loo, Department of Chemical and Biological Engineering
Materials chemistry and physics of complex, soft materials, specifically, electrically-active polymeric and molecular materials.
Office: A323 E-Quad Phone: 8-9091 lloo@princeton.edu

Satish C. B. Myneni, Department of Geosciences
Molecular environmental chemistry, interfacial chemistry of the natural systems, trace element biogeochemistry, and applications of vibrational, K- and L- edge X-ray absorption spectroscopy & microscopies in probing homogeneous and heterogeneous reactions.
Office: 151 Guyot Phone: 8-5848 smyneni@princeton.edu

Sabine Petry, Department of Molecular Biology
Molecular architecture and function of the microtubule cytoskeleton
Office: 401 Schultz Laboratory Phone: 8-2664 spetry@princeton.edu

Michele Sarazen, Department of Chemical and Biological Engineering
Advancing in catalysis science and active site engineering to solve both fundamental and applied chemical engineering challenges to substantially meet our growing energy and product demands
Office: A221 E-Quad Phone: 8-8331 msarazen@princeton.edu

Jeffry Stock, Department of Molecular Biology
Membrane receptors and signal transduction. Affiliated with Princeton Institute for the Science and Technology of Materials (PRISM) and Program in Neuroscience.
Office: 148 Lewis Thomas Phone: 8-6111 jstock@princeton.edu
Martin Wühr, Department of Molecular Biology
Understanding how tiny molecules self-organize into much larger organelles, cells, and organisms. Deciphering the underlying molecular mechanisms and asking how different nuclear composition affects biological function.
Office: 246 Ichan Laboratory Phone: 8-7653 wuhr@princeton.edu

Nieng Yan, Department of Molecular Biology
Revealing the molecular choreography at atomic resolution to unveil the physiological and cellular processes involving membrane transport.
Office: 119 Lewis Thomas Lab Phone: 8-0385 nyan@princeton.edu

— Teaching Faculty —

Sonja Francis
Organic Chemistry
Office: 283 Frick Phone: 8-4980 sonja@princeton.edu

Michael Kelly
Inorganic Chemistry
Office: 322 Frick Phone: 8-4461 mtk2@princeton.edu

Sandra Knowles
Organic Chemistry
Office: 322 Frick Phone: 8-4461 mtk2@princeton.edu

Robert L’Esperance
General Chemistry, Director of Undergraduate Studies
Office: A89 Frick Phone: 8-1307 rpl@princeton.edu

Jenny Sarahi Martinez
Organic Chemistry
Office: A89 Frick Phone: TBA smartinez@princeton.edu

István Pelczer
NMR Spectroscopy
Office: B09 Frick Phone: 8-2342ipelczer@princeton.edu

Susan VanderKam
Inorganic Chemistry
Office: 284 Frick Phone: 8-1727 skillian@princeton.edu

Chia-Ying Wang
Physical Chemistry
Office: 321 Frick Phone: 8-3885 chiawang@princeton.edu
APPENDIX

Useful Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>American Chemical Society</td>
</tr>
<tr>
<td>AI</td>
<td>Assistant in Instruction (Teaching Assistant)</td>
</tr>
<tr>
<td>AR</td>
<td>Assistant in Research (Research Assistant)</td>
</tr>
<tr>
<td>DCE</td>
<td>Dissertation Completion Enrollment</td>
</tr>
<tr>
<td>DGS</td>
<td>Director of Graduate Studies</td>
</tr>
<tr>
<td>ET/DCC</td>
<td>Enrollment Terminated Degree Candidacy Continues</td>
</tr>
<tr>
<td>FPO</td>
<td>Final Public Oral (oral defense of the thesis)</td>
</tr>
<tr>
<td>GSO</td>
<td>Graduate Student Organization</td>
</tr>
<tr>
<td>MRSEC</td>
<td>Materials Research Science and Engineering Center</td>
</tr>
<tr>
<td>OFP</td>
<td>Out of Field Proposal (original research proposal)</td>
</tr>
<tr>
<td>PACM</td>
<td>Program in Applied and Computational Mathematics</td>
</tr>
<tr>
<td>PCCM</td>
<td>Princeton Center for Complex Materials</td>
</tr>
<tr>
<td>PEI</td>
<td>Princeton Environmental Institute</td>
</tr>
<tr>
<td>PRISM</td>
<td>Princeton Institute for the Science and Technology of Materials</td>
</tr>
<tr>
<td>VRSC</td>
<td>Visiting Student Research Collaborator</td>
</tr>
</tbody>
</table>

Guidelines for the General Examination

The General Examination Committee will be comprised of a student’s advisor and two in-field committee members; one of whom interfaces with another subfield. The General Exam committee is assigned for the purpose of the exam only, and they do not become the Advisory Committee or Thesis Committee. At the start of the exam, the student will be asked to leave the room for a few minutes so that the committee can discuss the written proposal and the advisor’s evaluation letter. Once the student returns to the room they will present an approximately 20-minute seminar-type talk on their proposed thesis research using PowerPoint or Keynote. The committee may interrupt the presentation to ask questions. The student should also be prepared to use the blackboard as necessary. After the
presentation, the exam committee will question the student to get a sense of how prepared they are to continue doing thesis research at Princeton. The committee might also ask some general chemistry questions. This part of the exam will take about 30 minutes.

The student will then make a second seminar type presentation of their independent research proposal. This should take about 10 minutes and will be followed by questions from the committee, following a format similar to the thesis proposal examination.

When the committee has finished asking questions, the student will leave the room while the Generals Committee discusses the presentations and responses to questions. When the committee has decided upon a final Generals Exam grade (Pass, Fail, or Pass with Distinction), they call the student back into the room to share feedback about their presentation, progress and the examination results.

–Thesis Research Proposal Guidelines

The Thesis Research Proposal is a brief document (approximately 15 pages of text and figures plus reference pages) that provides a basis for the oral portion of the General Examination. It is recommended that it be organized as suggested below, somewhat on the model of a standard NSF proposal.

1. **Background and significance** - This section should answer the question, “why is the proposed work important?” Briefly sketch the background to the present proposal, critically evaluate existing knowledge, and identify gaps in our present understanding. This exposition is intended to place the proposed work into a broader scientific context, and to provide clear and logical motivation for both the general approach and the specific aims (point 2 below) of the present proposal.

2. **Specific aims** - This section is intended to answer, in very specific terms, the question, “what do you propose to do?” No background or other narrative material belongs in this section; it is not meant to stand alone, nor to provide details about the experimental system, but rather to provide a succinct and specific summary of the planned research. This section could, for example, consist of little more than a well-organized outline describing questions to be answered, hypotheses to be tested, and experiments to be conducted. It is probably most helpful to write this section only after writing the rest of the proposal.

3. **Progress report** - Describe your thesis project briefly. Provide a progress report on your work to date, making very clear which contributions are yours and which are not. If you have made any observations or developments that are new, describe in detail what you did, and how. Discuss the relationship of your thesis work to the broad, long-term interests and objectives of your research group and, in turn, relate your thesis topic and your group’s interests to your proposal. It is understood that these relationships vary in different research groups, and that the thesis work may yet evolve in directions different from those you envision now. It is understood that individual progress will vary.

4. **Planned studies** - Describe the overall strategy, methodology and analyses to be used to accomplish the remaining specific aims of your proposal. Provide appropriate calculations or cite literature data to support the feasibility of the experiments you propose. Discuss potential pitfalls of any proposed experiments that lack clear precedent and propose alternative approaches to achieve the aims.

5. **Complete citations** - All authors and the titles of research articles or book chapters must be included in the list of references.
Independent Research Proposal Guidelines

The independent research proposal should be modeled after a standard NSF proposal and should be no more than 15 pages in length, including figures, with references in addition. However, before undertaking the writing of the actual proposal, you should prepare a one page summary of your idea and send it to your Advisory Committee for review. The Advisory Committee will determine whether this second proposal is sufficiently independent from the thesis research. You should only proceed with the actual proposal once your committee agrees that your idea is sufficiently independent and gives you their approval.

The proposal should be organized as suggested below:

1. **Background and significance** - This section should answer the question: *Why is the proposed work important?* Briefly sketch the background to the present proposal, critically evaluate existing knowledge, and identify gaps in our present understanding. This exposition is intended to place the proposed work into a broader scientific context and to provide clear and logical motivation for both the general approach and the specific aims (see below) of the present proposal. This section may need to occupy as many as 3-4 pages.

2. **Specific aims** - This section is intended to answer, in very specific terms, the question: *What do you propose to do?* No background or other narrative material belongs in this section; it is not meant to stand alone, nor to provide details about the experimental system, but rather to provide a succinct and specific summary of the planned research. This section could, for example, consist of little more than a well-organized outline describing questions to be answered, hypotheses to be tested, and experiments to be conducted. It is probably most helpful to write this section after writing the rest of the proposal. It should occupy no more than one page.

3. **Experimental design and feasibility** - This section should parallel Specific Aims and should answer the question: *How will you do the proposed work?* Describe each experiment you propose to conduct and how you will analyze the data and interpret the results. Provide appropriate calculations or cite literature data to support the feasibility of the experiments you propose. Supporting evidence that comes from unpublished work must be clearly identified as such and specifically attributed. Discuss potential pitfalls of any proposed experiments that lack clear precedent, and propose alternative approaches to achieve the aims. Indicate how each of your proposed experiments will address the gaps in present knowledge and, for any gaps that will not be addressed, discuss why they are not being addressed. This section may need to occupy as many as 3-4 pages.

4. **References** - The list of references must include complete citations, including all authors and the titles of research articles or book chapters.

Prior to the defense of their thesis at the Final Public Oral, the student will generate an original research proposal, not related to the thesis research, and defend it before the advisory committee. It is strongly recommended that this be done well before the FPO so that it does not conflict with thesis work, preferably during the 4th year so that it does not conflict with thesis work.

Guidelines for Preparing the Pre-FPO Original Research Proposal

At least one month prior to the FPO, the student will generate an original research proposal, not related to the thesis research, and defend it before the advisory committee.

The “Out of Field” research proposal (OFP) must be written and circulated among the Advisory Committee for review at least two weeks before the oral presentation date. The student is responsible
for organizing the committee members to meet for this oral exam and informing the Graduate Administrator prior to the date agreed upon. The committee records a grade for the written proposal and its oral defense. Grading is on a scale from Excellent to Fail. Again, this written proposal is a brief document, modeled after a standard NSF proposal. It should be no more than 15 pages in length including figures, with references in addition.

It should be organized as suggested below:

1. **Background and significance** - This section should answer the question: Why is the proposed work important? Briefly sketch the background to the present proposal, critically evaluate existing knowledge, and identify gaps in our present understanding. This exposition is intended to place the proposed work into a broader scientific context and to provide clear and logical motivation for both the general approach and the specific aims (see below) of the present proposal. This section may need to occupy as many as 3-4 pages.

2. **Specific aims** - This section is intended to answer, in very specific terms, the question: What do you propose to do? No background or other narrative material belongs in this section; it is not meant to stand alone, nor to provide details about the experimental system, but rather to provide a succinct and specific summary of the planned research. This section could, for example, consist of little more than a well-organized outline describing questions to be answered, hypotheses to be tested, and experiments to be conducted. It is probably most helpful to write this section after writing the rest of the proposal. It should occupy no more than one page.

3. **Experimental design and feasibility** - This section should parallel Specific Aims and should answer the question: How will you do the proposed work? Describe each experiment you propose to conduct and how you will analyze the data and interpret the results. Provide appropriate calculations or cite literature data to support the feasibility of the experiments you propose. Supporting evidence that comes from unpublished work must be clearly identified as such and specifically attributed. Discuss potential pitfalls of any proposed experiments that lack clear precedent, and propose alternative approaches to achieve the aims. Indicate how each of your proposed experiments will address the gaps in present knowledge and, for any gaps that will not be addressed, discuss why they are not being addressed. This section may need to occupy as many as 3-4 pages.

4. **References** - The list of references must include complete citations, including all authors and the titles of research articles or book chapters.

Thesis & Final Publications Checklist
(http://gradschool.princeton.edu/sites/gradschool/files/checklist_phd_defense_1.pdf)

Before Writing

- Consult the Mudd Library website: http://www.princeton.edu/~mudd/thesis/index.shtml. This will provide you with all needed information about formatting and binding your thesis. You MUST follow the format required by Mudd. Please make special note of how to format the title page, which much list your advisor’s name. This site also provides information on publishing your thesis.

- For citation styles, follow the standard ACS style, details of which can be found at www.acs.org

At Least Six Weeks Before FPO Exam

- Choose one member of thesis committee to serve as second reader of thesis.
— Submit thesis draft to advisor.
— Find a fourth member to serve on your Thesis Committee. This person must attend both your Out-of-Field Proposal and your FPO.
— Finalize dates, times when committee is available for the FPO and book a room for the exam.

At Least Four Weeks Before FPO Exam

— Submit final thesis draft to advisor and second reader.
— Incorporate reader comments and proofread!

At Least Two Weeks Before FPO Exam

— A completed electronic ADVANCED DEGREE APPLICATION must be submitted to the Office of Academic Affairs. This on-line application is available via SCORE. The following are to be uploaded by the student when submitting the degree application:

— **TITLE PAGE OF THE DISSERTATION.** The correct degree award date must appear at the bottom of the title page. See below for dates.

— **DISSERTATION ABSTRACT** *(Must not exceed 350 words.)*

— **EMBARGO REQUEST AND APPROVAL FORM** *(if applicable)*

The following should be given to the Graduate Administrator:

— **PRIOR PRESENTATION AND PUBLICATION FORM:** Signed by your advisor

— **TWO (2) READERS’ REPORTS:** One from your advisor and one from a second member of your committee. At least one reader must be a member of the Chemistry Department. *(Both of the above forms are available at http://gradschool.princeton.edu/forms/academic)*

— **ONE (1) BOUND OR ELECTRONIC COPY OF DISSERTATION**

One Week Before FPO Exam

— Confirm FPO date, time with thesis committee.

— Complete online submission of dissertation to ProQuest at www.etdadmin.com/princeton: Upload a PDF of dissertation, choose a publishing option, register copyright (optional) and pay relevant fees. *(ProQuest fees are to be paid online: Traditional publishing is free; Open Access publishing is $95. Copyright registration (optional) is $55.) Note: the dissertation maintenance fee of $15 must be paid separately to the Mudd Library as a credit card or check payment after your exam.*

— Complete the following online surveys and give the required hard copies of confirmation to the Graduate Administrator:

— **EXIT QUESTIONNAIRE** available on SCORE. Print out a hard copy of “Confirmation of Completion”.

Day of FPO Exam

— Arrive 15 minutes early to set up
— Bring bound dissertation

After FPO Exam
Bring the following to Mudd Manuscript Library:

- Print-out of email confirming successful submission to ProQuest
- Bound copy of dissertation
- 1 dissertation maintenance fee of $15, payable by exact cash or check made out to “Princeton University Library”
- 3 copies of FPOE Report Form obtained from the Graduate Administrator after completion of the exam.

If you’ve requested an embargo, you will need written documentation of the Graduate School’s approval of the request.

<table>
<thead>
<tr>
<th>FPO Deadline Dates</th>
<th>Degree Awarded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, August 31, 2021</td>
<td>Saturday, September 25, 2021</td>
</tr>
<tr>
<td>Friday, October 29, 2021</td>
<td>Saturday, November 20, 2021</td>
</tr>
<tr>
<td>Thursday, December 30, 2021</td>
<td>Saturday, January 22, 2022</td>
</tr>
<tr>
<td>Friday, March 25, 2022</td>
<td>Saturday, April 9, 2022</td>
</tr>
<tr>
<td>Monday, May 9, 2022</td>
<td>Tuesday, May 24, 2022</td>
</tr>
</tbody>
</table>

Graduate School Alcohol Beverage Policy

(From “Rights, Rules, Responsibilities,” http://www.princeton.edu/pub/rrr/, Section 2.2.9)

Graduate students at Princeton University are expected to be acquainted with and to abide by both State and University regulations regarding the consumption of alcohol. They are also expected to be aware of the social, physiological, and psychological consequences of excessive drinking in order to make responsible and informed decisions about the serving and consumption of alcohol. The University provides regular educational programs on alcohol and drug abuse, as well as counseling services.

The University alcoholic beverage policy is designed to be consistent with the laws of the State of New Jersey that, in general, prohibit the consumption and serving of alcoholic beverages by and to persons under 21 years of age. The policy also reflects the need for mutual respect and personal responsibility within a diverse community. Students are responsible for their behavior – whether or not they are under the influence of alcohol. Under no circumstances will the consumption of alcohol constitute a mitigating circumstance when it contributes to the violation of University regulations.

The University respects the right to privacy: its representatives will not enter dormitory rooms without substantive cause (i.e., without reasonable suspicion that University policies or regulations have been violated.) However, those individuals whose behavior infringes on the rights of others have, in essence, forfeited that privacy.

Alcoholic beverages will not normally be provided at University events where persons under the legal drinking age for consumption of alcoholic beverages are present. Those who are of legal drinking age and who wish to sponsor campus events with alcohol must comply with the guidelines established by the Office of the Dean of the Graduate School.

If given approval to serve alcoholic beverages, those organizing the event are responsible for ensuring that only those of legal drinking age are served. Availability of alcoholic beverages shall not be the primary focus of advertising for campus social events.

It is the primary responsibility of those in the presence of a severely intoxicated person to contact appropriate University or local medical or safety personnel (proctors, deans, McCosh Health Center Staff, Princeton Medical Center Staff, or local police or members of the rescue squad.) Intoxication will not be grounds for disciplinary action. Contacting the Department of Public Safety for assistance
in transporting a student in need of medical attention will not, in itself, lead to disciplinary action. Disciplinary action will occur only if other circumstances indicating a violation of University policy are observed. In such an instance, the fact that students initiated a call for assistance will be considered a mitigating circumstance.

— Event Planning

Graduate student organizations wishing to hold an event on campus, must observe the guidelines for planning and conducting the event contained in the Events Planning Handbook
(https://gradschool.princeton.edu/life-princeton/events-and-programs/planning-event)
Fires

If you discover a fire:

• **Alert** people in the area of the need to evacuate
• **Activate** the nearest fire alarm
• **Call** Public Safety at 258-3333 once outside

If a building fire alarm is sounding or you receive notification of a fire emergency:

• **Feel the door** or doorknob to the hallway with the back of your hand. If it feels hot, do not open it - the fire may be on the other side of the door. If you are trapped, put a cloth, towel or coat under the door to help prevent the entry of smoke. Dial 911 or 609-258-3333 and tell the Public Safety dispatcher your location and telephone number and that you are trapped in the room and need rescue. Stay on the phone until instructed otherwise.

• **If the door is not hot**, open it slowly. If the hallway is clear of smoke, walk to the nearest exit and evacuate via the **nearest exterior stairwell on the lab side of the building**, to the street / grade level exit.

• **Close doors behind you.**

• **Do not attempt to use elevators.** Elevators are tied to the fire detection system and are not available to occupants once the alarm sounds.

Assemble at the area below. Remain there, until instructed by Public Safety or the fire department that it is safe to re-enter the building.

Northeast corner near Princeton Stadium
Evacuation Procedures

Evacuate immediately, using the exterior fire stairwells, on the lab side of the building, unless you have specific emergency responsibilities designated in the Additional Duties section of this plan. Do not use the Atrium or the Atrium stairs to exit the building. After you have left the building, go to the designated assembly area and remain there. At the assembly point, supervisors will account for personnel and notify the Emergency Coordinator or Public Safety if any personnel are missing.

Shelter in Place

During certain emergency situations, particularly chemical releases, radioactive material releases and some weather emergencies, you may be advised to "Shelter in Place" (e.g., remain in side) rather than evacuate the building. Instructions will be provided to you on this matter. Some may include the following:

- Stay inside the building.
- If possible, go to a room or corridor where there are no windows, i.e., Taylor Auditorium / basement level room
- In the event of a chemical release, go to an above-ground level of the building, since some chemicals are heavier than air and may seep into basements, even if windows are closed. Atrium level or above level rooms are advised for this situation.
- Do not use elevators.
- Shut and lock all windows and doors. Locking can provide a tighter seal.
- Contact Special Facilities 8-8000 to turn off the heat, air conditioning or ventilation system.
- Quickly locate supplies you may need, e.g., food, water, radio, etc.
- If possible, monitor for additional information via the main University web page, radio (88.1, 97.5, 101.5, 103.3, 1350, 1450, and 1490) or television for further instructions.
- Do not call 911 unless you are reporting a life-threatening situation.

Additional steps to be taken if materials are available:

- In the event of a chemical, biological or radioactive material release requiring shelter-in-place, seal doors and windows with duct tape and/or plastic sheeting, wet paper towels, etc.
- Cover cracks under doors with damp towels. When the "all clear" is announced
- Open windows and doors.
- Facilities to turn on heating, air conditioning or ventilation system.
- Await further instructions.

Persons with Disabilities

Planning for Assistance in an Evacuation

If you need specialized assistance during an evacuation (e.g. a visual alarm device, identification of fire-exit stairwells, specialized evacuation equipment or alternative egress route planning) due to a medical condition or disability, please contact the Frick Chemistry Facilities & Safety Manager or the Office of Disability Services to arrange for a needs assessment. Self-identification is voluntary and confidential. All such requests and any special arrangements made will only be disclosed to Public Safety and
individuals who have a responsibility to assist under the plan. Remember that elevators are connected to the fire detection system and are not available to occupants once a fire alarm sounds.

Evacuation Procedures
If you are alone at the time of a fire or emergency evacuation, notify Public Safety of your location by calling **911 from any campus phone or 609-258-3333 from a cellular phone**. Proceed to the nearest fire-exit stair well and wait on the landing for assistance. To ensure that your location is known, tell an individual who is evacuating, to notify Public Safety at the designated assembly point of your location. Members of Public Safety, the Princeton Fire Department or the Princeton First Aid and Rescue Squad will assist you from the building.

University Fire Emergency Policy and Procedure
In case of a fire emergency *, notify Public Safety immediately at **911 from any campus phone or 609-258-3333**. Public Safety has primary responsibility for managing fire emergencies and summoning outside assistance when necessary. Unauthorized re-entry into a building during a fire emergency is not permitted. Violators of this policy are subject to University and state fire code sanctions.

Building occupants are not required to fight fires. Individuals who have been trained in the proper use of a fire extinguisher and are confident in their ability to cope with the hazards of a fire may use a portable fire extinguisher to fight small, incipient stage fires (no larger than a waste paper basket).

Firefighting efforts must be terminated when it becomes obvious that there is risk of personal harm.

Frick Chemistry Laboratory has a designated Emergency Coordinator responsible for developing and maintaining a departmental Emergency Action Plan (EAP) and training employees on all elements of the plan, as well as any special duties assigned to specific individuals. During a fire emergency, only individuals designated in the EAP may remain in the building to fulfill their responsibilities. All other occupants must immediately evacuate the building in accordance with the departmental Emergency Action Plan.

IMPORTANT!
In an emergency, the University will use the **Princeton TigerAlert Notification System** (formerly PTENS) to communicate information and instructions.

Please update your contact information as needed.
Emergency Coordinators for Frick Chemistry:

Kevin Wilkes, kwilkes@princeton.edu, 609-258-3920

Lab Safety Leaders

A01 to A08 - Teaching Labs - Virginia Sari/ Patrick Andrae
L’ Esperance / S. Knowles

<table>
<thead>
<tr>
<th>Lab#</th>
<th>Lab Monitor</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A09</td>
<td>Kelly Powderly</td>
<td>Cava</td>
</tr>
<tr>
<td>101</td>
<td>Nicholas Falcone</td>
<td>Sorensen</td>
</tr>
<tr>
<td>102</td>
<td>Jake Ganley</td>
<td>Knowles</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>William Lyon</td>
<td>MacMillan</td>
</tr>
<tr>
<td>105</td>
<td>Nathan Dow</td>
<td>MacMillan</td>
</tr>
<tr>
<td>106</td>
<td>Olivia Garry</td>
<td>MacMillan</td>
</tr>
<tr>
<td>201</td>
<td>Vincent Zheng</td>
<td>Groves</td>
</tr>
<tr>
<td>202</td>
<td>Ju-Young Kim</td>
<td>Yang</td>
</tr>
<tr>
<td>203</td>
<td>Ju-Young Kim</td>
<td>Yang</td>
</tr>
<tr>
<td>204</td>
<td>Daniel Oblinsky</td>
<td>Scholes</td>
</tr>
<tr>
<td>205</td>
<td>Rolf-Peter Ryseck</td>
<td>Rabinowitz</td>
</tr>
<tr>
<td>206</td>
<td>Boran Lee/J. Darmon</td>
<td>Chirik</td>
</tr>
<tr>
<td>301</td>
<td>Barbara Dul</td>
<td>Muir</td>
</tr>
<tr>
<td>302</td>
<td>Barbara Dul</td>
<td>Muir</td>
</tr>
<tr>
<td>303</td>
<td>Barbara Dul</td>
<td>Muir</td>
</tr>
<tr>
<td>304</td>
<td>Yueyu Yao</td>
<td>Hecht</td>
</tr>
<tr>
<td>305</td>
<td>Vasiliki Chioti</td>
<td>Seyedsayamdost</td>
</tr>
<tr>
<td>306</td>
<td>Vasiliki Chioti</td>
<td>Seyedsayamdost</td>
</tr>
<tr>
<td>307</td>
<td>Emilia Arguello</td>
<td>Kleiner</td>
</tr>
<tr>
<td>308</td>
<td>Emilia Arguello</td>
<td>Kleiner</td>
</tr>
<tr>
<td>309</td>
<td>Robert Kirby</td>
<td>Schoop</td>
</tr>
<tr>
<td>310</td>
<td>Rebecca Evans</td>
<td>Bocarsly</td>
</tr>
<tr>
<td>310</td>
<td>Robert Kirby</td>
<td>Schoop</td>
</tr>
</tbody>
</table>

B Level

<table>
<thead>
<tr>
<th>Lab</th>
<th>Lab Monitor</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>B03/B07</td>
<td>Daniel Oblinsky</td>
<td>Scholes Laser</td>
</tr>
<tr>
<td>BO6</td>
<td>Istvan Pelczer/ Ken Conover</td>
<td>NMR Lab</td>
</tr>
<tr>
<td>BO6A</td>
<td>Hahn Kim</td>
<td>Small Molecule Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biophysics Lab</td>
</tr>
<tr>
<td>B06B</td>
<td>Venu Vandavasi</td>
<td></td>
</tr>
<tr>
<td>B08</td>
<td>John Eng</td>
<td>Spectroscopy Lab</td>
</tr>
<tr>
<td>B13</td>
<td></td>
<td>Yang Laser Lab</td>
</tr>
<tr>
<td>B14</td>
<td>John Eng</td>
<td>Mass Spec Lab</td>
</tr>
<tr>
<td>B15</td>
<td></td>
<td>Yang Laser Lab</td>
</tr>
<tr>
<td>B16A</td>
<td>John Eng</td>
<td>Mass Spec Lab</td>
</tr>
<tr>
<td>B16</td>
<td>Ashley Fidler</td>
<td>Weichman</td>
</tr>
<tr>
<td>B17</td>
<td>Joseph Stiles</td>
<td>Schoop</td>
</tr>
<tr>
<td>B18</td>
<td>Neal Byrne</td>
<td>Lotus Separations</td>
</tr>
<tr>
<td>B24</td>
<td>Francois Lahforge</td>
<td>Rabitz Laser Lab</td>
</tr>
<tr>
<td>B25</td>
<td>Venu Vandavasi</td>
<td>Biophysics Lab</td>
</tr>
<tr>
<td>B26</td>
<td>Phil Jeffrey</td>
<td>X-Ray Lab</td>
</tr>
</tbody>
</table>
Procedures for Lab Safety Monitors

Direct all lab personnel to leave the lab at once through the nearest exterior fire stairwell exit. Check lab support rooms, instrument labs, cold rooms, etc. Check restrooms on your way out. Do not stay behind if personnel do not adhere to your directions. Take their name and report it to the Command Center outside the building. If anyone is working on a potentially dangerous experiment or questionable chemicals are left out during an evacuation, report this information to the Command Center. Once outside the building, help direct your lab associates to the designated assembly area, i.e., the northeast corner near Princeton Stadium.

Administrative Floor Monitors:

Level B: Ken Conover/ Mike Kervan / Jim Magee/ Marco Rodriguez
Level A: Vicky Lloyd/ Meredith LaSalle-Tarantin/__________
Level 1: Kelsey Lovering/__________/
Level 2: Jon Darmon/ Pattie Faranetta/__________
Level 3: Kim Dugo/ Patti Wallack/ Kevin Wilkes

Procedures for Floor Monitors

Walk your designated floor quickly, direct all personnel to leave the building immediately through the nearest fire exit and check for people in the:

Floor B - Auditorium, Kitchenette, Stock Room, Offices, NMR, Small Molecule Center, Mass Spec Lab, Biophysics Lab, Lotus Separations, Maintenance, Laser Labs, X-ray Lab, Restrooms and any other enclosed or secluded areas.

Floor A - Offices, Mail Room, Restrooms, Faculty Lounge, Center Office/Cubical Areas, Vending Area, Cove Areas, Cafe, Servery, A81, MPR A57, Cava Office locations, Group Room, and any other enclosed or secluded areas.

Floors 1, 2, 3 Offices, Group Rooms, Theory Labs, Kitchenettes, Restrooms, Conference Rooms, Lounge Areas and any other enclosed or secluded areas.

If doors are locked, knock loud enough to be heard. Instruct all people to leave the building at once. If anyone does not adhere to your direction, ask them their name and report them to the Command Center, outside the building. Do not stay behind for anyone not following directions!

Wranglers:

Interior Main Entrance: Janet Gruschow
Interior South Entrance: Doug Rosso

Procedures for Interior WRanglers: Direct people to the nearest exit and keep the foot pace as quick as possible.

Exterior Designated Assembly Area/NE corner by Princeton Stadium: Clarice Gethers-Mubarak, Phil Fairall

Procedures for Exterior Wranglers: Direct people to the designated assembly area, i.e., the Northeast corner near Princeton Stadium. Keep everyone away from the Command Center at the front of the building.