Ignacio Franco
Ignacio Franco
Mon, Apr. 30, 2018, 4:30pm
Edward C. Taylor Auditorium, Frick B02
Host: Herschel Rabitz
Stark Control of Electrons
A general goal in our quest to control matter and energy is the design of strategies to control electronic properties and electron dynamics using coherent laser sources. In addition to its interest at a fundamental level, lasers permit manipulation on an ultrafast timescale opening the way to control the ability of matter to chemically react, conduct charge, absorb light, or other properties, in a femto to attosecond timescale.
In this talk, I will summarize our efforts to understand electronic decoherence processes in molecules that are deleterious to interference-based scenarios for the laser control. In addition, I will discuss how, through Stark effects, non-resonant light of intermediate intensity (non-perturbative but non-ionizing) can be used to generate “laser-dressed” molecules and materials with non-equilibrium properties that can be very different from those observed by matter near thermodynamics equilibrium. In particular, I will discuss how Stark effects can be employed to turn transparent nanomaterials into broadband absorbers, and to generate currents in nanoscale junctions.