Karsten Meyer
From the Norbornyl Cation Story to Basic Coordination Chemistry at Iron and Uranium-Mediated Electrocatalytic Water Splitting – Touring the Periodic Table from Top to Bottom
Taylor Auditorium, Frick Lab, B02
Host: SILS: Student Invited Lecture Series
The interdisciplinary chemistry in the Meyer laboratory focuses on the synthesis of custom-tailored ligand environments and their d and f-block metal coordination complexes. These complexes often exhibit unprecedented coordination modes and unusual electronic structures; and consequently, enhanced reactivities towards small molecules of biological and industrial importance, which we aim to (photo-electro-chemically) activate and functionalize. Synthetic chemistry is at the heart of our research program and modern crystallographic, spectroscopic, and computational methods are applied to elucidate the molecular and electronic structures and the origin of reactivity of our newly synthesized molecules.
In this seminar, we briefly highlight our collaborative efforts to elucidate the unusual structures of the archetypal non-classical norbornyl cation[1] and organometallic Fe(IV) derivatives of the classic ferrocene.[2] Advancing the coordination chemistry of tripodal N-heterocyclic carbene ligands allowed for the synthesis and structural characterization of Fe(IV)[3] and Fe(V)[4] as well as superoxidized Fe(VI) and Fe(VII) nitrido complexes.[5] Our study on high-valent iron nitrides {Fe–N}eventually led to the currently most complete series of iron nitrosyl complexes: the pentade {Fe–NO}6-10.[6] Surprisingly, high-valent {Fe–N} and low-valent {Fe–NO} are structurally and electronically very closely related. Finally, we present our efforts on the uranium-based activation and functionalization of CO2,[7] which, ultimately, led to the development of f-element uranium[8] and lanthanide-based[9] molecular catalysts for the electrocatalytic production of H2 from H2O.
Key References
[1] F. Scholz, D. Himmel, F.W. Heinemann, P.v.R. Schleyer, K. Meyer* and I. Krossing* in Science 2013, 341, 62.
[2] M. Malischewski, M. Adelhardt, J. Sutter, K. Meyer* and K. Seppelt* in Science 2016, 353, 678.
[3] C. Vogel, F. W. Heinemann, J. Sutter, C. Anthon and K. Meyer* in Angew. Chem. Int. Ed. 2008, 47, 2681.
[4] a) J.J. Scepaniak, C.S. Vogel, M.M. Khusniyarov, F.W. Heinemann, K. Meyer* and J.M. Smith* in Science 2011, 331, 1049.
b) M. Keilwerth, L. Grunwald, W. Mao, F.W. Heinemann, E. Bill and K. Meyer* in J. Am. Chem. Soc. 2021, 143, 1458.
[5] M. Keilwerth, W. Mao, et int., S. DeBeer, D. Munz, E. Bill and K. Meyer in Nature Chem. 2024, 16, 514–520.
[6] M. Keilwerth, J. Hohenberger, F.W. Heinemann, J. Sutter, Scheurer, H. Fang, E. Bill, F. Neese, S. Ye* and K. Meyer* in J.
Am. Chem. Soc. 2019, 141, 17217.
[7] a) I. Castro-Rodriguez, H. Nakai, L. Zakharov, A.L. Rheingold and K. Meyer* in Science 2004, 305, 1757. b) I. Castro-
Rodriguez and K. Meyer* in J. Am. Chem. Soc. 2005, 127, 11242. c) S.C. Bart, F.W. Heinemann, E. Bill, N.M. Edelstein and K.Meyer* in J. Am. Chem. Soc. 2008, 130, 12536. d) S.J. Zuend, O.P. Lam, F.W. Heinemann and K. Meyer* in Angew. Chem., Int.Ed. 2011, 50, 10626. e) A.-C. Schmidt, A. Scheurer, F.W. Heinemann and K. Meyer* in Chem. Commun. 2012, 48, 8634. f) A.-C. Schmidt, F.W. Heinemann, L. Maron, P.W. Roesky and K. Meyer* in Chem. Eur. J. 2014, 20, 13501.
[8] a) D.P. Halter, F.W. Heinemann, J. Bachmann and K. Meyer* in Nature 2016, 530, 317. b) D. P. Halter, F. W. Heinemann, L.Maron and K. Meyer* in Nature Chem. 2018, 10, 259.
[9] D.P. Halter, C. T. Palumbo, J. W. Ziller, M. Gambicki, A. L. Rheingold, W. J. Evans* and K. Meyer* in J. Am. Chem. Soc.
2018, 140, 2587.
Sponsorship of an event does not constitute institutional endorsement of external speakers or views presented.