Home / Faculty & Research / Giacinto Scoles

Giacinto Scoles

Research Area:
Contact:

 

Scoles Group Website

 

Giacinto Scoles
Donner Professor of Science, Emeritus; Professor of Chemistry, Emeritus
[email protected]
215-204-0308

Research Focus

During the last ten years, I have shifted the center of my scientific activity towards the important and interesting questions that are now emerging in the fields of biology and medicine. I am trying to bring my contribution to these research areas with the tools and the method of Nanoscience and Nanotechnology without losing sight of the need for a quantitative treatment and the use of theory and molecular simulations so that our contribution could be distinguished from those equally important but of a less general nature that can be obtained through the classic methods of molecular biology.

The focus and the goal of our research is likely to be for the next 5 years the quantitative, high throughput, measurement of proteins and their interactions (Interactomics) in samples produced by a very small number of cells or within single cells. By means of this type of measurements we hope to make new inroads into quantitative diagnostics and disease monitoring. A second interest is the study (using the same methods and techniques) of stem cells especially in human organs, like the heart, where until relatively recently their presence had escaped detection by standard methods.

Finally, we have recently entered the field of drug discovery where we hope to apply a new method that we call of the “earphones”. In this method we make use of the tremendous advances made recently by computational theory in calculating and optimizing in a reliable way the interactions between small peptides and structured and unstructured biomolecules — enzymes, in particular. Briefly we plan to tether a “drug” molecule with a linker to an oligo-pepetide that is designed to (and indeed does) bind to the back of the enzyme. The increased effective concentration of the “drug” will then ensure its binding to the active site of the enzyme. These new but “digestable” drugs will unlikely to be toxic, but in order to cross the cell membrane unchanged and ready to do their job, they will need to be delivered via targeted nanovectors.


Selected Publications

Avolio, E.; Gianfranceschi, G.; Cesselli, D.; Caragnano, A.; Athanasakis, E.; Katare, R.; Meloni, M.; Palma, A.; Barchiesi, A.; Vascotto, C.; Toffoletto, B.; Mazzega, E.; Finato, N.; Aresu, G.; Livi, U.; Emanueli, C.; Scoles, G.; Beltrami, C. A.; Madeddu, P.; Beltrami, A. P., “Ex vivo molecular rejuvenation improves the therapeutic activity of senescent human cardiac stem cells in a mouse model of myocardial infarction.” Stem cells (Dayton, Ohio) 2014, 32 (9), 2373-85.

Borin, D.; Melli, M.; Dal Zilio, S.; Toffoli, V.; Scoles, G.; Toffoli, G.; Lazzarino, M., “How to engineer superhydrophobic micromechanical sensors preserving mass resolution.” Sensors and Actuators B-Chemical 2014, 199, 62-69.

Corvaglia, S.; Sanavio, B.; Enriquez, R. P. H.; Sorce, B.; Bosco, A.; Scaini, D.; Sabella, S.; Pompa, P. P.; Scoles, G.; Casalis, L., “Atomic force microscopy based nanoassay: a new method to study alpha-Synuclein-dopamine bioaffinity interactions.” Scientific Reports 2014, 4.

Doni, G.; Ngavouka, M. D. N.; Barducci, A.; Parisse, P.; De Vita, A.; Scoles, G.; Casalis, L.; Pavan, G. M., “Structural and energetic basis for hybridization limits in high-density DNA monolayers.” Nanoscale 2013, 5 (20), 9988-9993.

Parisse, P.; Vindigni, A.; Scoles, G.; Casalis, L., “In Vitro Enzyme Comparative Kinetics: Unwinding of Surface-Bound DNA Nanostructures by RecQ and RecQ1.” Journal of Physical Chemistry Letters 2012, 3 (23), 3532-3537.

Liang, J.; Castronovo, M.; Scoles, G., “DNA as Invisible Ink for AFM Nanolithography.” Journal of the American Chemical Society 2012, 134 (1), 39-42.

Mandal, S.; Rosso, N.; Tiribelli, C.; Scoles, G.; Krol, S., “Targeted multicomponent polysomes for high efficiency, simultaneous anti-sense and gene delivery.” Soft Matter 2011, 7 (19), 9424-9434.

Melli, M.; Scoles, G.; Lazzarino, M., “Fast Detection of Biomolecules in Diffusion-Limited Regime Using Micromechanical Pillars.” Acs Nano 2011, 5 (10), 7928-7935.

Castronovo, M.; Lucesoli, A.; Parisse, P.; Kurnikova, A.; Malhotra, A.; Grassi, M.; Grassi, G.; Scaggiante, B.; Casalis, L.; Scoles, G., “Two-dimensional enzyme diffusion in laterally confined DNA monolayers.” Nature Communications 2011, 2.

Toma, F. M.; Sartorel, A.; Iurlo, M.; Carraro, M.; Parisse, P.; Maccato, C.; Rapino, S.; Rodriguez Gonzalez, B.; Amenitsch, H.; Da Ros, T.; Casalis, L.; Goldoni, A.; Marcaccio, M.; Scorrano, G.; Scoles, G.; Paolucci, F.; Prato, M.; Bonchio, M., “Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces.” Nature Chemistry 2010, 2 (10), 826-831.

Kopf, I.; Grunwald, C.; Bruendermann, E.; Casalis, L.; Scoles, G.; Havenith, M., “Detection of Hybridization on Nanografted Oligonucleotides Using Scanning Near-Field Infrared Microscopy.” Journal of Physical Chemistry C 2010, 114 (2), 1306-1311.

Herrero, M. A.; Toma, F. M.; Al-Jamal, K. T.; Kostarelos, K.; Bianco, A.; Da Ros, T.; Bano, F.; Casalis, L.; Scoles, G.; Prato, M., “Synthesis and Characterization of a Carbon Nanotube-Dendron Series for Efficient siRNA Delivery.” Journal of the American Chemical Society 2010, 132 (5), 1731-1731.

iang, J.; Scoles, G., “An Analysis of Conductive-Probe Atomic Force Microscopy Applied to the Study of Electron Transport Mediating Properties of Self-Assembled Monolayers.” Journal of Physical Chemistry C 2010, 114 (24), 10836-10842.

Sanavio, B.; Scaini, D.; Grunwald, C.; Legname, G.; Scoles, G.; Casalis, L., “Oriented Immobilization of Prion Protein Demonstrated via Precise Interfacial Nanostructure Measurements.” Acs Nano 2010, 4 (11), 6607-6616.

ntonia Herrero, M.; Toma, F. M.; Al-Jamal, K. T.; Kostarelos, K.; Bianco, A.; Da Ros, T.; Bano, F.; Casalis, L.; Scoles, G.; Prato, M., “Synthesis and Characterization of a Carbon Nanotube-Dendron Series for Efficient siRNA Delivery.” Journal of the American Chemical Society 2009, 131 (28), 9843-9848.

Bano, F.; Fruk, L.; Sanavio, B.; Glettenberg, M.; Casalls, L.; Niemeyer, C. M.; Scoles, G., “Toward Multiprotein Nanoarrays Using Nanografting and DNA Directed Immobilization of Proteins.” Nano Letters 2009, 9 (7), 2614-2618.

 

Mirmomtaz, E.; Castronovo, M.; Grunwald, C.; Bano, F.; Scaini, D.; Ensafi, A. A.; Scoles, G.; Casalis, L., “Quantitative Study of the Effect of Coverage on the Hybridization Efficiency of Surface-Bound DNA Nanostructures.” Nano Letters 2008, 8 (12), 4134-4139.

Murdachaew, G.; de Gironcoli, S.; Scoles, G., “Toward an accurate and efficient theory of physisorption. I. Development of an augmented density-functional theory model.” Journal of Physical Chemistry A 2008, 112 (40), 9993-10005.

Scaini, D.; Castronovo, M.; Casalis, L.; Scoles, G., “Electron transfer mediating properties of hydrocarbons as a function of chain length: A differential scanning conductive tip atomic force microscopy investigation.” Acs Nano 2008, 2 (3), 507-515.

Staii, C.; Wood, D. W.; Scoles, G., “Ligand-induced structural changes in maltose binding proteins measured by atomic force microscopy.” Nano Letters 2008, 8 (8), 2503-2509.

Staii, C.; Wood, D. W.; Scoles, G., “Verification of biochemical activity for proteins nanografted on gold surfaces.” Journal of the American Chemical Society 2008, 130 (2), 640-646.

Birer, O.; Moreschini, P.; Lehmann, K. K.; Scoles, G., “Electronic spectroscopy of biphenylene inside helium Nanodroplets.” Journal of Physical Chemistry A 2007, 111 (31), 7624-7630.

Birer, O.; Moreschini, P.; Lehmann, K. K.; Scoles, G., “Electronic spectroscopy of nonalternant hydrocarbons inside helium nanodrople.” Journal of Physical Chemistry A 2007, 111 (49), 12200-12209.

Liang, J.; Rosa, L. G.; Scoles, G., “Nanostructuring, Imaging and molecular manipulation of dithiol monolayers on au(111) surfaces by atomic force Microscopy.” Journal of Physical Chemistry C 2007, 111 (46), 17275-17284.